
Lecture 11
How assembler works

Computing platforms
Novosibirsk State University
University of Hertfordshire

D. Irtegov, A.Shafarenko
2018

CdM-8
Opcodes

S0
=0

S0
=1

d

Fun 2-op RdRs

S1=00 Fun 1-op Rd

RdS0
=1 S1=01 Rs

Alu 2-op
add, sub,
adc, mov

Alu 1-op
inc, dec,
not, neg

ld/st

Full list of CdM-8 instructions

How CdM-8 assembler work

• Two passes
1. Allocation pass

• For each line of code, determine
• Is this line labelled? (yes -> rememver label)
• Is this line an instruction or dc/ds directive? (yes -> advance * by size of bit-string)

• No actual code is generated on this pass,
only lengths of bit-strings are calculated

1. Generation pass
• For each line, substitute values for labels and calculate expressions
• Generate bit-strings for instructions and instruction operands
• Generate bit-strings (values) for dc directives
• Generate zero-flled bit-string for ds directve

Why two passes?

• Because labels can be referenced before they are defined
dec r0
jle done

loop body
done:

continue after loop body
•

Single-pass assemblers

• For every line of code
• Line has a label? (yes -> remember it in symbol table)
• Label mentioned in cross-reference table?

(yes -> scan all references and substitute a value)
• Line references a label? (yes -> remember it in cross-reference table)

• Is referenced label already defined?
(yes -> substitute value of the label)
(no -> allocate a placeholder)

• Generate code or data, probably using placeholders
• Single-pass assemblers are faster, but more complex
• And they consume more memory
• they need to store code with placeholders

Linkers

• Conceptually, assembler+linker are similar to two-phase single-pass
assembler
• Assembler compiling a code with external (unresolved) references

must emit some code
• But it cannot emit finished code.
• It must use placeholders for references to external and relocatable

labels
• And it must build a cross-reference table for every external label
• And it must build a cross-reference (relocation) table for every

relocatable label

CdM-8 object file (listing and file itself)
10 2. LINKER

CdM -8 Assembler v2.0 <<<exobj.asm >>> 23/05/2015 15:22:29

1 asect 0xe0

e0: 03 2 my > dc 3

3 q>

e1: d2 e1 4 ldi r2,q

5 rsect foo

00: 10 6 bar > add r0 ,r0

01: d4 7 halt

8 rsect main

00: 71 9 main > cmp r0 ,r1

01: e8 04 10 bhi z3

03: d5 11 wait

04: d4 12 z3: halt

13 end

==

SECTIONS:

Name Size Relocation offsets

main 05 02

foo 02

ENTRIES:

Section Name/Offset

$abs q:e1 my:e0

main main :00

foo bar :00

EXTERNALS:

Name Used in

==

The object file generated by the assembler:

ABS e0: 03 d2 e1

NTRY q e1

NTRY my e0

NAME main

DATA 71 e8 04 d5 d4

REL 02

NTRY main 00

NAME foo

DATA 10 d4

REL

NTRY bar 00

2.2 Running the linker

The linker can be run from the command line (UNIX or Mac OS X) as follows:

cocol [-h] [-l] [-a] [-r] [-s] objfile [objfile ...]

10 2. LINKER

CdM -8 Assembler v2.0 <<<exobj.asm >>> 23/05/2015 15:22:29

1 asect 0xe0

e0: 03 2 my > dc 3

3 q>

e1: d2 e1 4 ldi r2,q

5 rsect foo

00: 10 6 bar > add r0 ,r0

01: d4 7 halt

8 rsect main

00: 71 9 main > cmp r0 ,r1

01: e8 04 10 bhi z3

03: d5 11 wait

04: d4 12 z3: halt

13 end

==

SECTIONS:

Name Size Relocation offsets

main 05 02

foo 02

ENTRIES:

Section Name/Offset

$abs q:e1 my:e0

main main :00

foo bar:00

EXTERNALS:

Name Used in

==

The object file generated by the assembler:

ABS e0: 03 d2 e1

NTRY q e1

NTRY my e0

NAME main

DATA 71 e8 04 d5 d4

REL 02

NTRY main 00

NAME foo

DATA 10 d4

REL

NTRY bar 00

2.2 Running the linker

The linker can be run from the command line (UNIX or Mac OS X) as follows:

cocol [-h] [-l] [-a] [-r] [-s] objfile [objfile ...]

In CdM-8, object files contain no tables

• Just lists of symbols and references
• And hexadecimal representation of code, data and placeholders
• So they are easy to read and easy to parse by Python
• “Real” computing platforms use binary object files
• Symbol and cross-reference tables are actual tables with headers,

binary values and offsets

Multi-pass assemblers

• In some Platform 2 (ISA), instructions can have variable length
• For example, branch instruction can have several forms:

• With byte offset for address (can branch +127 bytes forward or 128 back)
• With 16-bit offset
• With 32-bit offset
• With 64-bit offset

• x86/x64 ISA is example of such Platform 2
• When assembler compiles such instruction, It cannot know which form to

use, so it must allocate longest possible placeholder
• But when it finds a label definition, it can select a shorter form
• But then all labels defined after this instruction - … - !!!

Why multi-pass?

• Because, after you select shorter form for one branch instruction,
you might find that you can select a shorter form for some other
branches
• So, you must reassemble the program until no shorter form for every

label-referencing instruction can be found
• Usually, two or three passes are sufficient, but for big program you

might need more passes
• For external labels, assembler must use longest possible form in any

case.

