Lecture 11
How assembler works

Computing platforms

Novosibirsk State University
University of Hertfordshire

D. Irtegov, A.Shafarenko
2018

CdM-8
fun[3] ,Rs[2] ,Rd[2] | push

0

d ALU 1-op pop
coaes start Fun(3] R4 (2]
O P o
@ 01 Load and store ldsa
d[1],Rs[2],Rd[2] | S
Q\'
Alu 2-op o
add’ SUb, =) 0-op block 1
adC, mov 11 zop1[2]

Alu 1-op @ 1di
7

$1=00 inc, dec, 2 00
nOt' neg 01 0-op block 2
20 zop2[2]
|d/st % 0-op block 3
branches zop3[2]

cCc[3],inv[1]

Q
Csm D=

ldc
Rs[2],Rd[2]

Full list of CAM-8 instructions

bit-string fun fun d zopl zop2 zop3 | CC(inv=0) CC(inv=1)
(dec equiv) | (ALU 2-op) (ALU 1-op) branches

0 move not st addsp halt ioi beq bne

1 add neg 1d setsp wait rti bhs/bcs blo/bcc

2 addc dec pushall jsr crc bmi bpl

3 sub inc popall rts osix bvs bvc

4 and shr bhi bls

5 or shla bge blt

6 Xor shra bgt ble

7 cmp rol br nop

Immediate operands for: 1di, ldsa, jsr, branches, addsp, setsp

How CdM-8 assembler work

* TWO passes

1. Allocation pass
* For each line of code, determine
* Is this line labelled? (yes -> rememver label)
* [s this line an instruction or dc/ds directive? (yes -> advance * by size of bit-string)
* No actual code is generated on this pass,
only lengths of bit-strings are calculated
1. Generation pass
* For each line, substitute values for labels and calculate expressions
* Generate bit-strings for instructions and instruction operands
* Generate bit-strings (values) for dc directives
* Generate zero-flled bit-string for ds directve

Why two passes?

* Because labels can be referenced before they are defined
decr0
jle done
loop body
done:
continue after loop body

Single-pass assemblers

* For every line of code
* Line has a label? (yes -> remember it in symbol table)

* Label mentioned in cross-reference table?
(yes -> scan all references and substitute a value)

* Line references a label? (yes -> remember it in cross-reference table)

* Is referenced label already defined?
(yes -> substitute value of the label)
(no -> allocate a placeholder)

* Generate code or data, probably using placeholders
* Single-pass assemblers are faster, but more complex

* And they consume more memory
* they need to store code with placeholders

Linkers

* Conceptually, assembler+linker are similar to two-phase single-pass
assembler

* Assembler compiling a code with external (unresolved) references
must emit some code

e But it cannot emit finished code.

* It must use placeholders for references to external and relocatable
labels

* And it must build a cross-reference table for every external label

* And it must build a cross-reference (relocation) table for every
relocatable label

CdM-8 object file (listing and file itself)

e0:

el:

00:
01:

00:
01:
03:
04:

03

d2

10
d4

71

d5
d4

el

04

00 ~NO OV WN -

my >

bar >

main >

z3:

asect O0xeO
dc 3

1di r2,q
rsect foo
add r0,r0
halt

rsect main
cmp rO,ril
bhi z3

wait

halt

end

ABS

NTRY
NTRY
NAME
DATA
REL

NTRY
NAME
DATA
REL

NTRY

e0: 03 d2 el

q el

my €O

main

71 e8 04 db5 d4
02

main 0O

foo

10 d4

bar 00

In CdM-8, object files contain no tables

e Just lists of symbols and references

* And hexadecimal representation of code, data and placeholders
* So they are easy to read and easy to parse by Python

» “Real” computing platforms use binary object files

* Symbol and cross-reference tables are actual tables with headers,
binary values and offsets

Multi-pass assemblers

* |In some Platform 2 (ISA), instructions can have variable length

* For example, branch instruction can have several forms:
* With byte offset for address (can branch +127 bytes forward or 128 back)
* With 16-bit offset
* With 32-bit offset
* With 64-bit offset

* x86/x64 ISA is example of such Platform 2

* When assembler compiles such instruction, It cannot know which form to
use, so it must allocate longest possible placeholder

 But when it finds a label definition, it can select a shorter form
e But then all labels defined after this instruction - ... - 11

Why multi-pass?

* Because, after you select shorter form for one branch instruction,
you might find that you can select a shorter form for some other
branches

* S0, you must reassemble the program until no shorter form for every
label-referencing instruction can be found

e Usually, two or three passes are sufficient, but for big program you
might need more passes

* For external labels, assembler must use longest possible form in any
case.

